Cellular and synaptic adaptations mediating opioid dependence.

نویسندگان

  • J T Williams
  • M J Christie
  • O Manzoni
چکیده

Although opioids are highly effective for the treatment of pain, they are also known to be intensely addictive. There has been a massive research investment in the development of opioid analgesics, resulting in a plethora of compounds with varying affinity and efficacy at all the known opioid receptor subtypes. Although compounds of extremely high potency have been produced, the problem of tolerance to and dependence on these agonists persists. This review centers on the adaptive changes in cellular and synaptic function induced by chronic morphine treatment. The initial steps of opioid action are mediated through the activation of G protein-linked receptors. As is true for all G protein-linked receptors, opioid receptors activate and regulate multiple second messenger pathways associated with effector coupling, receptor trafficking, and nuclear signaling. These events are critical for understanding the early events leading to nonassociative tolerance and dependence. Equally important are associative and network changes that affect neurons that do not have opioid receptors but that are indirectly altered by opioid-sensitive cells. Finally, opioids and other drugs of abuse have some common cellular and anatomical pathways. The characterization of common pathways affected by different drugs, particularly after repeated treatment, is important in the understanding of drug abuse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracranial Self - Stimulation Optogenetics Michelle

quaternary structure of G protein-coupled receptors. FEBS J. 272:2914–2925 Stein C, Schafer M,Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008 Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990 Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol R...

متن کامل

Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway.

Chronic morphine administration induces adaptations in neurons resulting in opioid tolerance and dependence. Functional studies have implicated a role for the periaqueductal gray area (PAG) in the expression of many signs of opioid withdrawal, but the cellular mechanisms are not fully understood. This study describes an increased efficacy, rather than tolerance, of opioid agonists at mu-recepto...

متن کامل

The mediating role of self efficacy in the relationship between impulsivity and evoidant coping with relapse in opioid dependence

This study aimed to investigate the mediating role of self efficacy in the relationship between impulsivity and evoidant coping with relapse in opioid dependence. This study was a correlational – descriptive design. The study population was consisted of all individuals in addiction- quitting stage of Tehran city in 2017. 129 person were selected by available sampling method. Instruments for gat...

متن کامل

Opioid Receptors Gene Polymorphism and Heroin Dependence in Iran

Introduction: Genes often have multiple polymorphisms that interact with each other and the environment in different individuals. Variability in the opioid receptors can influence opiate withdrawal and dependence. In humans, A118G Single Nucleotide Polymorphisms (SNP) on μ-Opioid Receptor (MOR), 36 G>T in κ-Opioid Receptor (KOR), and T921C in the δ-Opioid Receptor (DOR) have been...

متن کامل

micro-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal.

Chronic morphine drives adaptations in synaptic transmission thought to underlie opiate dependence. Here we examine the role of micro-opioid receptor (MOR) trafficking in one of these adaptations, specifically, changes in GABA transmission in the ventral tegmental area (VTA). To address this question, we used a knock-in mouse, RMOR (for recycling MOR), in which genetic change in the MOR promote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological reviews

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2001